

Threat Intelligence & Incident Response Team

Dissecting PlugX to
Extract Its Crown Jewels
In-depth analysis and free tools

Author:

Felipe Duarte

Date:

September 14, 2022

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

2

Table of Contents

Executive Summary .. 3

Technical Details .. 4

Distribution ... 4

Infection ... 4

Stage 1 – Loader DLL .. 5

Stage 2 – Shellcode .. 7

Stage 3 – Core DLL .. 9

Detection Opportunities ... 16

Conclusions ... 16

Indicators of Compromise .. 17

YARA Rules .. 18

MITRE ATT&CK Matrix ... 21

References ... 24

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

3

Executive Summary

PlugX is a malware family first spotted in 2008. It is a Remote Access Trojan that has been
used by several threat actors and provides them with full control over infected machines. It
has continually evolved over time, adding new features and functionalities with each
iteration. Hence, it is important to keep following and documenting its transformations.

Currently, it remains as one of the most popular tools in the Asian cybercrime community,
given its flexibility and trajectory in the market; and it is still actively used by notorious
threat actors such as Mustang Panda, Winnti, Gallium, DragonOK1 and Earth Berberoka2.

This modular bot offers several customization options such as the communication protocol
used to interact with C2 servers, which could be done via ICMP, TCP, UDP, HTTP and even
HTTPS protocol. Also, it enables threat actors to extend its functionalities via additional
plugins that could be hardcoded into the Core DLL or by automatically loading and
executing additional PE files.

This threat has been widely documented by several companies. However, we saw the need
to create an up-to-date analysis that could explain with more accuracy the current state of
this malicious tool. With that objective in mind, in this document we want to explain in
great detail its main functionalities, and provide a deeper understanding about the new
Tactics, Techniques and Procedures implemented in the latest version of this attack, next
to some ideas and resources that could help your security team to detect and respond to a
PlugX infection.

The report in a nutshell:

• PlugX is still one of the most relevant malware families in Asia, being used by notorious

threat actors such as Earth Berberoka.

• PlugX keeps evolving, new features have been added to the 64bit variant.

• ICMLuaUtil Elevated COM interface is now being abused by PlugX to bypass the UAC.

• RDP is now used by PlugX as a channel to move laterally in a compromised network.

For more information about Security Joes incident response services, email:
response@securityjoes.com

1 https://attack.mitre.org/software/S0013/
2 https://documents.trendmicro.com/assets/white_papers/wp-operation-earth-berberoka.pdf

mailto:response@securityjoes.com

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

4

Technical Details

Distribution

PlugX is a notorious malware family in the Chinese cybercrime market. It is an old Remote
Access Tool (RAT) that has been used by several threat actors within different espionage
campaigns for years.

The means used by attackers to spread this threat may vary, however, lately it has been
actively distributed in China by the gang Earth Berberoka using modified or fake installers
of chat applications such as Telegram and Mimi to deceive users into executing malicious
code.

An example of this technique can be seen in Figure 1, which contains a piece of code
added to a Mimi installer to validate the type of operating system used by the victim and
deploy a threat compatible with the environment. These applications are usually written in
the JavaScript Framework Electron.

Figure 1. Snippet of code of the Electron APP Mimi modified to launch the malicious code store in the folder “deps”. The code

also checks the type of operating system to deploy a compatible threat.

Infection

This threat can be found for both x86 and x64 architectures. The behavior of each of the
OS variants is almost the same, however, the level of obfuscation and some features are
considerably different between both versions.

The x64 variant could be described as the most complete and up-to-date threat currently
available. It implements a new strategy to bypass the UAC by abusing the ICMLuaUtil
Elevated COM interface and also contains two additional plugins (Clipboard stealer and an
RDP spreader). We couldn’t find a public analysis report that details these features.

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

5

In contrast, the x86 source code has been left untouched for years. The only relevant
change that was seen during the analysis of the samples in question is an additional layer
of encryption to hide a shellcode.

To better understand the way an infection occurs when using PlugX, we’ve divided the flow
of the tool into 3 different components. The Loader DLL, the Shellcode and the Core DLL
(see Figure 2). Each of these components is executed in a different manner and
accomplishes different objectives during the attack. However, it is obligatory to have all of
them together in order to successfully complete an infection.

Figure 2. Main flow of an infection with the Windows backdoor PlugX.

The analysis of each of the components mentioned above is presented with all the
required details in the following sub-sections.

Stage 1 – Loader DLL

This first stage consistently relies on the DLL Side-Loading3 technique to execute the
spiteful code and evade detection – On a recorded YouTube video4 we’ve created, you can
see a live example of this technique.

In contrast to several other threat actors who usually use the same vulnerable file for all
their attacks, PlugX operators use a high variety of trusted binaries which are vulnerable to
DLL Side-Loading, including numerous anti-virus executables. This has been proven to be
effective while infecting victims.

The number of files used to accomplish a successful infection may vary depending on its
settings. There have been a few documented attacks that contained only three files, and
others which had four. The main difference between both infections is the location of the
configuration file used by the trojan during an attack. This configuration could be either a
single XOR-encrypted file stored on disk or could be appended to the Shellcode; reducing
the number of artifacts in the disk.

3 https://attack.mitre.org/techniques/T1574/002/
4 https://www.youtube.com/watch?v=E2_DTQJjDYc

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

6

As an example, in Figure 3, we compare two different attacks using PlugX. At the top, the
threat was configured to work by only using three files and at the bottom, it is using four
files. The files containing the Shellcode are in green; in purple are the trusted binaries that
are abused via DLL Side-Loading to run the malicious code, and in red are the Loader
DLLs responsible of launching the Shellcode. In addition to this, in blue is an encrypted
configuration file. It is present on disk only in the bottom example, since for the one at the
top; it is embedded into the Shellcode file “USOPrivate.dat”.

I
Figure 3. Comparison between two different attacks of PlugX. At the top an attack using the 3 files and at the bottom an attack

using 4 files.

Once a trusted application has been tricked to run a malicious library via DLL Side-
Loading, the malicious code starts. The main logic of this first stage can be summarized as
follows:

• Loader DLL looks for the Shellcode file in the same directory. This file contains the
code that will be injected into memory and executed.

• Memory is then allocated for the Shellcode file.
• The Shellcode file is mapped into the previously allocated memory.
• Memory permissions are set to allow the execution of the Shellcode.
• Shellcode is launched.

During the analysis, we found both x86 and x64 versions implementing this behavior.
What captured our attention is that threat actors neither obfuscated the Shellcode nor the
Loader DLL on the 64bit binaries. The Shellcode is simply mapped into memory and
executed without any additional modification and the Loader DLL can be easily extracted
and analyzed using a disassembler. Due to the lack of protection in binaries written for the
64bit architecture, both the Loader DLL and the Shellcode could be easily detected using
signatures such as YARA.

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

7

Figure 4. Snippet of code taken from an unprotected x64 Loader DLL, responsible of launching the Shellcode for 64 bits

binaries.

On the other hand, some of the analyzed x86 samples do contain some protections. One
example is an additional XOR-based encryption layer protecting the main Shellcode, which
makes it a little bit harder to track and detect.

Stage 2 – Shellcode

This stage contains the code responsible for decrypting and loading the malicious Core
DLL into memory. In this stage, XOR-based encryption and LZNT1 compression are usually
used by threat actors to protect the final payload.

The complexity of the encryption algorithm changes between forks. Some of them use a
simple single-byte-key XOR encryption while others implement more complex strategies to
generate the keystream, such as the algorithm described within the Python code below
(see Code 1), which uses a set of shift operations and additions to update the values of the
key.

This algorithm has been previously described and documented in several public reports [4,
5], and it is hardcoded into the Shellcode and the Core DLL for both architectures.

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

8

import struct

def xor_decrypt(data):
 """
 Decrypt PlugX payload and config

 :param data: Encrypted data buffer
 :return:
 """
 key = struct.unpack('<I', data[0:4])[0]
 key_a, key_b, key_c = key, key, key
 result = bytes([])

 for char in data:
 key = (key + (key >> 3) - 0x11111111) & 0xFFFFFFFF
 key_a = (key_a + (key_a >> 5) - 0x22222222) & 0xFFFFFFFF
 key_b = (key_b - (key_b << 7) + 0x33333333) & 0xFFFFFFFF
 key_c = (key_c - (key_c << 9) + 0x44444444) & 0xFFFFFFFF

 result += bytes([char ^ ((key + key_a + key_b + key_c) & 0x000000FF)])

 return result

Code 1. Python implementation of the algorithm used by the analyzed PlugX samples to encrypt sensitive data.

Once the Core DLL is decrypted in memory and decompressed using the
RtlDecompressBuffer API, the Shellcode starts resolving the required DLLs and functions
for the malware to run. Finally, it modifies the PE header, replacing the default values with
a custom structure that uses the magic string “PLUG” written in memory as a Little-Endian
sequence (see Figure 5), before passing the execution to the DLL. This process is probably
done to avoid being detected by several memory scanners that look for injected PE files in
memory. In this case, because the PE header is not found, such applications could classify
this memory region as data rather than code. Also, the string “PLUG” is checked several
times during the execution of the Core DLL to determine the method used to launch the
binary (via Shellcode or direct execution).

Figure 5. Custom PE header used PlugX. The string PLUG is written in memory as a Little-Endian sequence.

To protect the code of the Shellcode, some x86 samples implement an additional layer of
encryption that only modifies the first section. This protection mechanism relies on three
parameters to decrypt the data; these parameters seem to be dynamically resolved by the
builder when the payload is generated and are obfuscated by adding a large number of
useless instructions. The Python implementation of the encryption is presented below.

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-rtldecompressbuffer

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

9

def x86_clean_shellcode(sc, add_value, xor_value, sub_value):
 """
 Decrypt x86 shellcode

 :param sc: Encrypted Shellcode
 :param add_value:
 :param xor_value:
 :param sub_value:
 :return:
 """
 result = bytearray([])

 for char in sc[:0x5E8]:
 result += bytes([((((char + add_value) & 0xFF) ^ xor_value) - sub_value) & 0xFF])
 return result + sc[0x5E8:]

Code 2. Python implementation of the additional encryption algorithm implemented by some 32 bits PlugX samples to protect the

Shellcode. Values add_value, xor_value and sub_value are 8-bit unsigned integers that are dynamically set by the attack builder

to make detection more challenging.

Stage 3 – Core DLL

The main logic of the DLL is defined by parameters that are passed in the command line
when the binary is launched, and the method used to execute the malicious artifact. This
behavior is set in the configuration of the attack.

Right after starting the execution of the malicious code, its configuration is resolved, and it
is loaded from a location that depends on the method used to launch the payload. If the
payload was loaded using the Shellcode, this mode of operation is identified by comparing
its magic numbers with the string “PLUG”, the configuration is obtained from a buffer
passed as a parameter to the DLL or by reading the contents of a file called “boot.cfg“. If
the DLL was not executed by the shellcode, it will instead use a hardcoded configuration.

Figure 6. PLUG header validation to identify the method used to execute the DLL. If the magic numbers match the string

“PLUG” it means that the DLL was launched by the shellcode.

Then the threat creates the mutex; “DoInst“, if it is the x64 variant or “DoInstPrepare“ in
the case of a an x86 binary; and proceeds to copy files (the vulnerable exe, the Shellcode
and the Shellcode Loader DLL) to the final location defined in the configuration file.
Immediately after, it executes itself again launching the previously created files with
additional parameters in the command line. Finally, deletes the original files and kills the
current process.

Figure 7. New process spawned by the malware after copying its files to the installation folder. Additional parameters are passed

in the command line to update the control flow of the attack.

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

10

Execution continues within the new process, however this time the control flow is changed
based on the first parameter that is passed in the command line. The description of the
actions implemented by the trojan for each of the possible values of this parameter are
listed below.

Parameter value Description

100 Sets persistence and bypasses UAC

200 Injects Shellcode into a new svchost process

201 Executes the main loop

202 Executes variant of the main loop

209 Start plugin inter-process communication via Windows pipes

300 Remove itself from the machine

Parameter 100 - Persistence and UAC Bypass

The first action instigated by the attack right after copying its files to the folder defined in
the configuration is to check the user’s privileges in the system; if the user is already an
administrator, persistence can be set either by creating a new service or by setting a new
key in the registry hive SOFTWARE\Microsoft\Windows\CurrentVersion\Run. However, if the
user is not an administrator the attack will try to bypass the UAC. The technique used to
accomplish these changes notably between x64 and x86 variants. x64 binaries exploit the
ICMLuaUtil Elevated COM interface5 while x86 binaries rely on the traditional sysprep
technique6. In both cases, all these operations are triggered by the parameter 100 in the
command-line. Additional details related to both techniques are presented below:

ICMLuaUtil Elevated COM interface exploitation

The mechanism implemented in the x64 variants to bypass the UAC is by far one of the
most interesting parts of this stage, being it is a complete standalone DLL that is
decrypted and injected into a new process.

The code is protected using the same basic XOR algorithm described in the Shellcode, and
it is embedded in the data section of the Core DLL. To accomplish the injection of this
malicious code, the attack writes two different chunks of data in a suspended svchost
process. The first chunk contains a small shellcode with the logic to decrypt, decompress,
resolve Windows APIs and execute the code; whereas the second chunk consists of the
encrypted payload to be finally executed.

Once this new DLL has been launched the following actions will commence:

5
 https://www.elastic.co/guide/en/security/current/uac-bypass-via-icmluautil-elevated-com-interface.html

6 https://blogs.jpcert.or.jp/en/2015/02/a-new-uac-bypass-method-that-dridex-uses.html

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

11

1. Terminates some processes related to the Chinese Antivirus 360 Total Security if
they are found running in the victim’s machine. Among all the different analyzed
samples, the only processes that are terminated are 360tray.exe, and
ZhuDongFangYu.exe.

2. Launches an instance of the malicious code with elevated privileges by abusing the
ICMLuaUtil Elevated COM Interface [3]. The code used to accomplish this highly
reassembles the proof of concept shared in the following repository7.

Figure 8. Snippet of code containing the main logic implemented in the DLL to bypass the UAC by abusing the ICMLuaUtil

COM Interface.

Traditional Sysprep Bypass

In contrast to the method used by x64 binaries which work on the latest versions of
Windows, this technique was developed just for Windows 7 systems and has been proven
to be effective at escalating to administrative privileges without displaying the UAC
warning.

Its main logic can be summarized as follows:

1. PlugX drops a DLL to disk. This DLL can be found encrypted in the data section of
the main DLL, using the same XOR-based algorithm presented in the Shellcode
section.

2. PlugX injects code into explorer.exe to move the dropped file to
C:\Windows\System32\sysprep\cryptbase.dll.

7 https://github.com/0xlane/BypassUAC/blob/master/BypassUAC_Dll/dllmain.cpp

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

12

3. C:\Windows\System32\sysprep\sysprep.exe is executed and automatically loads the
malicious DLL stored in the C:\Windows\System32\sysprep\cryptbase.dll with
administrative privileges.

4. C:\Windows\System32\sysprep\cryptbase.dll launches a new instance of PlugX with
administrative privileges.

Parameter 200 - Process Injection

Once the trojan has obtained administrative privileges, it proceeds to execute the
operations defined in the command line parameter 200. In this case, it initiates a basic
process injection to hide the malicious code inside the memory of a new svchost process.
The injection technique is identical and used by x64 binaries to execute the DLL to bypass
the UAC, however in this case the content to be decrypted is the Core DLL. This injection is
performed for both x86 and x64 variants.

Figure 9. Process tree of the malicious code after obtaining the administrative privileges. The child process svchost spawned by

the trojan executes the main logic. The child msiexec process starts the plugin operation, both svchost and msiexec processes

communicate with each other via Windows pipe.

Parameter 201 - Main loop

Now that the malicious code is hidden in the svchost process, it continues to execute all
actions defined within parameter 201, which groups the core functionalities of the attack.

If the reader desires to get additional details about the inner workings of this threat for 32
bits systems, there are plenty of public reports that explain this, [4, 5]. We won’t dig
further into this version. Instead, we are going to focus this analysis on the x64 binaries
which are the ones that contain the new components that have not been described before
in any other report.

Continuing with the analysis of the 64 bits variant, this stage basically creates different
threads to handle new layers of process injection, initialize the plugin logic, start the
network communications, lateral movement, keylogging, and clipboard stealing routines.
These threads are identified by a custom hardcoded string. Below is the information of
each of the threads and their identifiers.

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

13

Thread
Name

Description

SiProc

If the sample was loaded by the Shellcode, it attempts to inject its code into a
new child process msiexec. Value 209 is passed as a parameter in the
command line, instructing this new process to handle the plugin logic,
commands and results are shared via Windows pipes.

KLProc
Starts keylogging logic, sample accomplishes that via the Windows API

RegisterRawInputDevices and SetWindowsHookExW.

CLProc Starts clipboard stealer via the Windows API SetClipboardViewer.

RDPPRoc Starts lateral movement, via RDP shared folder tsclient.

PlugProc
Loads additional plugins. Plugins are stored in disk encrypted with the same
algorithm, and their name matches the REGEX [0-127].plg.

Plugins

To simplify the process of expanding its functionalities, this attack provides operators with
the option to add additional plugins. Within the context of this threat, plugins are specific
pieces of code that will be executed to perform certain actions. In contrast to other
malware families with this capability, PlugX does not exclusively require a complete PE file
to be loaded as plugin, instead, it relies on simple functions hardcoded in the main
program and on external PE files stored in disk, which are decrypted and executed in run-
time.

Plugins are initialized right after the main loop is started. During this process, PlugX first
instantiates a set of objects referencing the hardcoded plugins. Then, it creates a thread
that attempts to load all plugins available on the disk.

Figure 10. Snippet of code responsible of initializing the plugins. Plugins are initialized as objects containing several attributes

such as an index, a timestamp, the function that will be called and a name.

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

14

When comparing this sample to the ones described in previous publications only two
additions were found, the ClipLog and the RDP plugins. In this article we are going to
explain these two additional findings, however, if the reader wants to get additional details
related to the other plugins, we highly recommend reading this article8 published by the
CIRCL in 2013.

Name Timestamp

Disk 0x20120325

Process 0x20120204

Service 0x20120117

RegEdit 0x20120315

Netstat 0x20120215

Nethood 0x20120213

Option 0x20120128

PortMap 0x20120325

Screen 0x20120220

Shell 0x20120305

Telnet 0x20120225

SQL 0x20120323

KeyLog 0x20120324

ClipLog 0x20190417

RDP 0x20190428

ClipLog

According to its timestamp, this piece of code was added to PlugX in 2019. Although
added 3 years ago, the absence of any publicly available analysis of this capability
captured our attention during this research.

As its name suggests, its main functionality is to allow the trojan to steal the contents of
the victim’s clipboard. This was achieved by creating a new clipboard viewer via the

Windows API SetClipBoardViewer. All the results of this operation are written to the file
log.hlp, which can be found in the root folder of the attack.

8 https://www.circl.lu/assets/files/tr-12/tr-12-circl-plugx-analysis-v1.pdf

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

15

Figure 11. Snippet of code used by PlugX to add an additional window into the chain of clipboard viewers. This allows the

malware to be notified every time the content of the clipboard is changed.

RDP

Looking at its timestamp, this plugin was the latest addition in the arsenal and just like the
ClipLog module, it was not documented in any previous public report.

It was designed to spread the trojan inside the victim’s network once a machine has been
compromised. This is done by enumerating each of the available RDP shared folders
“tsclient”, copying the malicious files (vulnerable executable, Loader DLL and Shellcode) to
the “ProgramData” folder in each of the remote systems and setting persistence via a VBS
script created in the Startup folder
\tsclient\C\Users\%s\AppData\Roaming\Microsoft\Windows\StartMenu\Programs\Startup\ of
each of the targeted devices.

Once the operation has been concluded, it creates a new file in
C:\Users\Public\Documents\desktop .ini to mark its correct execution. It is significant to
mention that this new file pretends to be a common Windows file to the non-trained eye,
however, it can be detected by the additional space added before the extension.

The script used to accomplish persistence is hardcoded in the content of the Core DLL
without any additional protection/obfuscation. It oversees commencing the threat by
executing the vulnerable application, then it waits for one second and deletes the Loader
DLL and the Shellcode. The content of this script is shown below:

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

16

"Set fso =
CreateObject(\"Scripting.FileSystemObject\"):if(fso.FileExists(\"C:\\ProgramData\\USO
Private.exe\")) Then:Set ws = CreateObject(\"Wscript.Shell\") :ws.run \"cmd /c start
C:\\ProgramData\\USOPrivate.exe\",vbhide:Wscript.Sleep
1000:Else:if(fso.FileExists(\"C:\\ProgramData\\log.dll\"))
Then:fso.DeleteFile(\"C:\\ProgramData\\log.dll\"):fso.DeleteFile(\"C:\\ProgramData\\U
SOPrivate.dat\"):End IF End IF"

Code 3. Visual Basic Script used by the PlugX x64 variant to set persistence on remote systems via RDP.

Detection Opportunities

The following are some ideas that could be used by your security team to hunt this threat
in your environment.

What to look for:

• Suspicious svchost.exe processes spawning msiexec.exe as a child process.
• Processes spawned by dllhost.exe with arguments "/Processid:{3E5FC7F9-9A51-

4367-9063-A120244FBEC7}" and "/Processid:{D2E7041B-2927-42FB-8E9F-
7CE93B6DC937}", this is a common behaviour when bypassing the UAC via ICMLuaUtil
Elevated COM Interface [3].

• Suspicious HTTP, UDP, TCP traffic to remote servers on port 53.
• New DLLs written in C:\Windows\System32\sysprep\cryptbase.dll.
• New files created in disk that attach a space after the filename to masquerade

themselves as trusted files9.

Conclusions

The RDP and the ClipLog plugins are two new additions to the PlugX arsenal, allowing this
RAT to move laterally within compromised networks and to steal data directly from the
clipboard. According to its timestamp, both functionalities were added in the year 2019.

Those features and the exploitation of the ICMLuaUtil Elevated COM interface to bypass the
UAC, a technique discovered and documented in 2020, are the latest relevant updates
discovered in the analyzed PlugX samples. They are also a clear sign of the gradual
evolution of this threat over time, to catch up with the current Windows ecosystem.

9 https://attack.mitre.org/techniques/T1036/006/

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

17

Indicators of Compromise

This section contains different indicators of compromise gathered during this investigation.
They were all extracted from several attack configurations belonging to the PlugX fork
exposed in this document.

Domain Ports

fuckeryoumm[.]nmb[.]bet 53 and 443

tcp[.]wy01[.]com 53, 443

tools[.]daji8[.]me 53, 443

a2[.]fafafazq[.]com 80

tho[.]pad62[.]com 443

tank[.]hja63[.]com 53

wps[.]daj8[.]me 53

wpsup[.]daj8[.]me 443

tools[.]googleupdateinfo[.]com 53, 443

fly[.]pad62[.]com 443

tho[.]hja63[.]com 53

helpdesk[.]lnip[.]org 443

www[.]trendmicro-update[.]org 80, 443

fuckchina[.]govnb[.]com 53, 80, 443

wmi[.]ns01[.]us 80

services[.]darkhero[.]org 443

microsafes[.]no-ip[.]org 53, 80, 443

wmi[.]ns01[.]us 12345

kr[.]942m[.]com 53, 80

www[.]92al[.]com 53

101[.]55[.]29[.]17 80

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

18

YARA Rules

Use the rules provided in this section to detect PlugX in your environment.

rule win_x86_backdoor_plug_x_shellcode_loader_dll {
 meta:
 author = "Felipe Duarte, Security Joes"
 description = "Detects the PlugX Shellcode Loader DLL for 32 bits systems"
 sha256_reference = "5304d00250196a8cd5e9a81e053a886d1a291e4615484e49ff537bebecc13976"

 strings:
 // Code to set memory protections and launch shellcode
 $opcode1 = { 8d ?? ?? 5? 6a 20 68 00 00 10 00 5? ff 15 ?? ?? ?? ?? 85 ?? 75 ?? 6a 43 e8 ?? ?? ?? ?? 83
c? ?? ff d? 3d ?? ?? ?? ?? 7d ?? 85 ?? 74 ?? 6a 4a e8 ?? ?? ?? ?? 83 c? ?? }

 // Strings required to resolve depencies to load and execute the shellcode
 $str1 = "kernel32" nocase
 $str2 = "GetModuleFileNameW"
 $str3 = "CreateFileW"
 $str4 = "VirtualAlloc"
 $str5 = "ReadFile"
 $str6 = "VirtualProtect"

 condition:
 all of them
}

rule win_x64_backdoor_plug_x_shellcode_loader_dll {
 meta:
 author = "Felipe Duarte, Security Joes"
 description = "Detects the PlugX Shellcode Loader DLL for 64 bits systems"
 sha256_reference = "6b8ae6f01ab31243a5176c9fd14c156e9d5c139d170115acb87e1bc65400d54f"

 strings:
 // Code to get file name of the current module and replaces the extension to .dat
 $opcode1 = { 4? 8d 1d ?? ?? ?? ?? 41 b8 00 20 00 00 33 c9 4? 8b d3 ff d0 4? 8b cb 89 44 ?? ?? ff 15 ??
?? ?? ?? b9 64 00 00 00 8d 50 fd 33 f6 66 89 0c ?? 8d 50 fe b9 61 00 00 00 66 89 0c ?? 8d 50 ff 8b c0 66
89 34 ?? 4? 8b 05 ?? ?? ?? ?? b9 74 00 00 00 66 89 0c ?? 4? 85 c0 75 ?? 4? 8b 05 ?? ?? ?? ?? 4? 85 c0 75
?? 4? 8d 0d ?? ?? ?? ?? ff 15 ?? ?? ?? ?? 4? 89 05 ?? ?? ?? ?? }

 // Code to set memory protections and launch shellcode
 $opcode2 = { 4? 8d 4c ?? ?? ba 00 00 10 00 41 b8 40 00 00 00 4? 8b cb ff d0 85 c0 74 ?? ff d3 83 c9 ff
ff 15 ?? ?? ?? ?? }

 // Strings required to resolve depencies to load and execute the shellcode
 $str1 = "kernel32" nocase
 $str2 = "GetModuleFileNameW"
 $str3 = "CreateFileW"
 $str4 = "VirtualAlloc"
 $str5 = "ReadFile"
 $str6 = "VirtualProtect"

 condition:
 all of them
}

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

19

rule win_x86_backdoor_plug_x_shellcode {
 meta:
 author = "Felipe Duarte, Security Joes"
 description = "Detects the PlugX Shellcode for 32 bits systems"
 sha256_reference = "07ed636049be7bc31fb404da9cf12cff6af01d920ec245b4e087049bd9b5488d"

 strings:
 // Code of the decryption rutine
 $opcode1 = { 8b ?? c1 e? 03 8d ?? ?? ?? ?? ?? ?? 8b ?? c1 e? 05 8d ?? ?? ?? ?? ?? ?? 8b ?? ?? c1 e? 07
b? 33 33 33 33 2b ?? 01 ?? ?? 8b ?? ?? c1 e? 09 b? 44 44 44 44 2b ?? 01 ?? ?? 8b ?? ?? 8d ?? ?? 02 ?? ??
02 ?? ?? 32 ?? ?? 88 ?? 4? 4? 75 ?? }

 // Stack strings for VirtualAlloc
 $opcode2 = { c7 8? ?? ?? ?? ?? 56 69 72 74 c7 8? ?? ?? ?? ?? 75 61 6c 41 c7 8? ?? ?? ?? ?? 6c 6c 6f 63
88 ?? ?? ?? ?? ?? ff d? }

 condition:
 all of them
}

rule win_x64_backdoor_plug_x_shellcode {
 meta:
 author = "Felipe Duarte, Security Joes"
 description = "Detects the PlugX Shellcode for 64 bits systems"
 sha256_reference = "07ed636049be7bc31fb404da9cf12cff6af01d920ec245b4e087049bd9b5488d"

 strings:
 // Code of the decryption rutine
 $opcode1 = { 41 8b ?? 41 8b ?? c1 e? 03 c1 e? 07 45 8d ?? ?? ?? ?? ?? ?? 41 8b ?? c1 e? 05 45 8d ?? ??
?? ?? ?? ?? b? 33 33 33 33 2b ?? 41 8b ?? 44 03 ?? c1 e? 09 b? 44 44 44 44 2b ?? 44 03 ?? 43 8d ?? ?? 41
02 ?? 41 02 ?? 32 ?? ?? 88 ?? 4? ff c? 4? ff c? }

 // Stack strings for VirtualAlloc
 $opcode2 = { c6 4? ?? 56 c6 4? ?? 69 c6 4? ?? 72 c6 4? ?? 74 c6 4? ?? 75 c6 4? ?? 61 c6 4? ?? 6c c6 4?
?? 41 c6 4? ?? 6c c6 4? ?? 6c c6 4? ?? 6f c6 4? ?? 63 }

 condition:
 all of them
}

rule win_x86_backdoor_plug_x_uac_bypass {
 meta:
 author = "Felipe Duarte, Security Joes"
 description = "Detects the PlugX UAC Bypass DLL for 32 bits systems"
 sha256_reference = "9d51427f4f5b9f34050a502df3fbcea77f87d4e8f0cef29b05b543db03276e06"

 strings:
 // Main loop
 $opcode1 = { 0f b7 ?? ?? ?? ?? ?? ?? 4? 66 85 ?? 75 ?? 8d ?? ?? ?? ?? ?? ?? 66 83 3? 00 74 ?? 5? e8 ??
?? ?? ?? 5? c3 }

 $str1 = "kernel32" nocase
 $str2 = "GetCommandLineW"
 $str3 = "CreateProcessW"
 $str4 = "GetCurrentProcess"
 $str5 = "TerminateProcess"

 condition:
 all of them
}

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

20

rule win_x64_backdoor_plug_x_uac_bypass {
 meta:
 author = "Felipe Duarte, Security Joes"
 description = "Detects the PlugX UAC Bypass DLL for 64 bits systems"
 sha256_reference = "547b605673a2659fe2c8111c8f0c3005c532cab6b3ba638e2cdcd52fb62296d3"

 strings:
 // 360tray.exe stack strings
 $opcode1 = { 4? 83 e? 48 b? 33 00 00 00 4? 8d ?? ?? ?? c7 44 ?? ?? 2e 00 65 00 66 89 ?? ?? ?? b? 36 00
00 00 c7 44 ?? ?? 78 00 65 00 66 89 ?? ?? ?? b? 30 00 00 00 66 89 ?? ?? ?? b? 74 00 00 00 66 89 ?? ?? ??
b? 72 00 00 00 66 89 ?? ?? ?? b? 61 00 00 00 66 89 ?? ?? ?? b? 79 00 00 00 66 89 ?? ?? ?? 33 ?? 66 89 ??
?? ?? e8 ?? ?? ?? ?? }

 $str1 = "Elevation:Administrator!new:%s" wide ascii
 $str2 = "{3E5FC7F9-9A51-4367-9063-A120244FBEC7}" wide ascii
 $str3 = "{6EDD6D74-C007-4E75-B76A-E5740995E24C}" wide ascii
 $str4 = "CLSIDFromString"
 $str5 = "CoGetObject"

 condition:
 all of them
}

rule win_x86_backdoor_plug_x_core {
 meta:
 author = "Felipe Duarte, Security Joes"
 description = "Detects the PlugX Core DLL for 32 bits systems"
 sha256_reference = "fde1a930c6b12d7b00b6e95d52ce1b6536646a903713b1d3d37dc1936da2df88"

 strings:
 // Decryption routine
 $opcode1 = { 8b ?? ?? 8b ?? c1 e? 03 8d ?? ?? ?? ?? ?? ?? 8b ?? c1 e? 05 8d ?? ?? ?? ?? ?? ?? 8b ?? c1
e? 07 b? 33 33 33 33 2b ?? 8b ?? ?? 03 ?? c1 e? 09 b? 44 44 44 44 2b ?? 01 ?? ?? 8d ?? ?? 02 ?? 02 ?? ??
89 ?? ?? 8b 5? ?? 32 ?? 32 4? ff 4? ?? 88 ?? ?? 75 ?? 5? }

 $str1 = "Mozilla/4.0 (compatible; MSIE " wide ascii
 $str2 = "X-Session" ascii
 $str3 = "Software\\CLASSES\\FAST" wide ascii
 $str4 = "KLProc"
 $str5 = "OlProcManager"
 $str6 = "JoProcBroadcastRecv"

 condition:
 all of them
}

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

21

rule win_x64_backdoor_plug_x_core {
 meta:
 author = "Felipe Duarte, Security Joes"
 description = "Detects the PlugX Core DLL for 64 bits systems"
 sha256_reference = "af9cb318c4c28d7030f62a62f561ff612a9efb839c6934ead0eb496d49f73e03"

 strings:
 // Decryption routine
 $opcode1 = { 41 8b ?? 8b ?? 4? ff c? c1 e? 03 c1 e? 07 45 8d ?? ?? ?? ?? ?? ?? 41 8b ?? c1 e? 05 45 8d
?? ?? ?? ?? ?? ?? b? 33 33 33 33 2b ?? 8b ?? 03 ?? c1 e? 09 b? 44 44 44 44 2b ?? 03 ?? 43 8d ?? ?? 02 ??
40 02 ?? 43 32 ?? ?? ?? 4? ff c? 41 88 ?? ?? 75 ?? }

 $str1 = "Mozilla/4.0 (compatible; MSIE " wide ascii
 $str2 = "X-Session" wide ascii
 $str3 = "Software\\CLASSES\\FAST" wide ascii
 $str4 = "KLProc"
 $str5 = "OlProcManager"
 $str6 = "JoProcBroadcastRecv"

 condition:
 all of them
}

MITRE ATT&CK Matrix

Tactic Technique Sub-technique

TA0001: Initial
Access

T1566: Phishing
T1566.002: Spearphishing
Link

TA0002: Execution
T1059: Command and Scripting
Interpreter

T1059.007: JavaScript

TA0002: Execution
T1059: Command and Scripting
Interpreter

T1059.005: Visual Basic

TA0002: Execution
T1559: Inter-Process
Communication

T1559.001: Component
Object Model

TA0002: Execution T1569: System Services T1569.002: Service Execution

TA0002: Execution T1204: User Execution T1204.002: Malicious File

TA0003: Persistence
T1547: Boot or Logon Autostart
Execution

T1547.001: Registry Run Keys
/ Startup Folder

TA0003: Persistence
T1543: Create or Modify System
Process

T1543.003: Windows Service

TA0004: Privilege
Escalation

T1548: Abuse Elevation Control
Mechanism

T1548.002: Bypass User
Account Control

TA0004: Privilege
Escalation

T1543: Create or Modify System
Process

T1543.003: Windows Service

TA0005: Defense
Evasion

T1140: Deobfuscate/Decode Files
or Information

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

22

TA0005: Defense
Evasion

T1564: Hide Artifacts
T1564.001: Hidden Files and
Directories

TA0005: Defense
Evasion

T1574: Hijack Execution Flow T1574.002: DLL Side-Loading

TA0005: Defense
Evasion

T1562: Impair Defenses
T1562.001: Disable or Modify
Tools

TA0005: Defense
Evasion

T1070: Indicator Removal on Host T1070.004: File Deletion

TA0005: Defense
Evasion

T1036: Masquerading
T1036.004: Masquerade Task
or Service

TA0005: Defense
Evasion

T1036: Masquerading
T1036.005: Match Legitimate
Name or Location

TA0005: Defense
Evasion

T1112: Modify Registry

TA0005: Defense
Evasion

T1027: Obfuscated Files or
Information

T1027.002: Software Packing

TA0005: Defense
Evasion

T1055: Process Injection
T1055.012: Process
Hollowing

TA0007: Discovery T1046: Network Service Discovery

TA0007: Discovery T1135: Network Share Discovery

TA0007: Discovery T1057: Process Discovery

TA0007: Discovery T1012: Query Registry

TA0007: Discovery T1018: Remote System Discovery

TA0007: Discovery
T1082: System Information
Discovery

TA0007: Discovery
T1016: System Network
Configuration Discovery

TA0007: Discovery
T1049: System Network
Connections Discovery

TA0007: Discovery T1007: System Service Discovery

TA0008: Lateral
Movement

T1021: Remote Services
T1021.001: Remote Desktop
Protocol

TA0009: Collection T1119: Automated Collection

TA0009: Collection T1115: Clipboard Data

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

23

TA0009: Collection T1005: Data from Local System

TA0009: Collection T1056: Input Capture T1056.001: Keylogging

TA0009: Collection T1113: Screen Capture

TA0011: Command
and Control

T1132: Data Encoding
T1132.001: Standard
Encoding

TA0011: Command
and Control

T1001: Data Obfuscation
T1001.003: Protocol
Impersonation

TA0011: Command
and Control

T1573: Encrypted Channel
T1573.001: Symmetric
Cryptography

TA0011: Command
and Control

T1105: Ingress Tool Transfer

TA0011: Command
and Control

T1095: Non-Application Layer
Protocol

TA0011: Command
and Control

T1090: Proxy T1090.002: External Proxy

TA0010: Exfiltration
T1041: Exfiltration Over C2
Channel

Dissecting PlugX to Extract Its Crown Jewels

Threat Intelligence & Incident Response Team

24

References

[1] https://malpedia.caad.fkie.fraunhofer.de/details/win.plugx

[2] https://www.elastic.co/guide/en/security/current/uac-bypass-via-icmluautil-elevated-

com-interface.html

[3] https://vms.drweb.com/virus/?i=21512304

[4] https://www.circl.lu/assets/files/tr-12/tr-12-circl-plugx-analysis-v1.pdf

[5] https://blogs.jpcert.or.jp/en/2015/02/a-new-uac-bypass-method-that-dridex-

uses.html

[6] https://documents.trendmicro.com/assets/white_papers/wp-operation-earth-

berberoka.pdf

https://malpedia.caad.fkie.fraunhofer.de/details/win.plugx
https://www.elastic.co/guide/en/security/current/uac-bypass-via-icmluautil-elevated-com-interface.html
https://www.elastic.co/guide/en/security/current/uac-bypass-via-icmluautil-elevated-com-interface.html
https://vms.drweb.com/virus/?i=21512304
https://www.circl.lu/assets/files/tr-12/tr-12-circl-plugx-analysis-v1.pdf
https://blogs.jpcert.or.jp/en/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
https://blogs.jpcert.or.jp/en/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
https://documents.trendmicro.com/assets/white_papers/wp-operation-earth-berberoka.pdf
https://documents.trendmicro.com/assets/white_papers/wp-operation-earth-berberoka.pdf

