
1/16

RedDelta PlugX Undergoing Changes and Overlapping
Again with Mustang Panda PlugX Infrastructure

blog.xorhex.com/blog/reddeltaplugxchangeup/

xorhex

Focus on Threat Research through malware reverse engineering

New RedDelta PlugX variant undergoes revisions to slow down analysis. Extracted C2s link
back to two known Mustang Panda command and control servers.

June 2, 2021
xorhex

9-Minute Read

Family PlugX - RedDelta Variant

Threat
Actor

Mustang Panda

Encrypted 1c7897a902b35570a9620c64a2926cd5d594d4ff5a033e28a400981d14516600

Decryption
Key

0x78, 0x61, 0x6c, 0x72, 0x45, 0x5a, 0x6f, 0x78, 0x43, 0x59, 0x73, 0x71, 0x6c,
0x52, 0x6e, 0x77, 0x78, 0x46, 0x63, 0x43, 0x46

Key
Length

21

https://blog.xorhex.com/blog/reddeltaplugxchangeup/
https://blog.xorhex.com/
https://blog.xorhex.com/blog/reddeltaplugxchangeup/

2/16

Decrypted ec1c29cb6674ffce989576c51413a6f9cbb4a8a41cbd30ec628182485a937160

Config C2 101.36.125.203:965

Config C2 101.36.125.203:110

Config C2 vitedannews.com:965

Config C2 vitedannews.com:110

Summary

Mustang Panda (aka RedDelta, BRONZE PRESIDENT) is striving to make their PlugX
variant more challenging to reverse statically. This RedDelta PlugX variant overlaps with
instrastructure tied to Mustang Panda’s PlugX variant, something we’ve seen before.
Mustang Panda is believed to be a Chinese nation-sponsored espionage group. Public
reporting shows MustangPanda targeting non-government organizations (NGOs), including
religious entities. They appear to focus locations in close proximity like Mongolia, Hong
Kong, and Vietnam. Mustang Panda is known for making use of PlugX, Posion Ivy, and
Cobalt Strike. The PlugX sample covered in this blog demonstrates how this group is
continuing to evolve their toolset in a likely attempt to slow down researchers and avoid
security automation tools.

Key Findings

Shares command and control infrastructure with other Mustang Panda PlugX binaries
Decryption key length increased to 21 characters
Control flow obfuscation added
Code variations in the dynamic Windows API resolutions

Mustang Panda / RedDelta Connection

When Recorded Future reported on RedDelta last year they differentiated between Mustang
Panda and RedDelta. They both make use of PlugX binaries, and due to binary similarities
and overlapping infrastructure, we track them as the same group. The key binary differences
in the RedDelta PlugX version are:

Config block check for ########
RC4 Encryption

The config block check is how we primarily distinguish between the Mustang Panda
variant and the RedDelta variant. The “original” Mustang Panda variant
uses XXXXXXXX .

https://www.secureworks.com/research/bronze-president-targets-ngos
https://www.recordedfuture.com/reddelta-targets-catholic-organizations/
https://www.crowdstrike.com/blog/meet-crowdstrikes-adversary-of-the-month-for-june-mustang-panda/
https://www.avira.com/en/blog/new-wave-of-plugx-targets-hong-kong
https://blog.vincss.net/2020/03/re012-phan-tich-ma-doc-loi-dung-dich-COVID-19-de-phat-tan-gia-mao-chi-thi-cua-thu-tuong-Nguyen-Xuan-Phuc.html
https://go.recordedfuture.com/hubfs/reports/cta-2020-0728.pdf
https://threatconnect.com/blog/research-roundup-mustang-panda-and-reddelta-plugx-using-same-c2/

3/16

4/16

Figure 1: RedDelta Variant Config Check
(ec1c29cb6674ffce989576c51413a6f9cbb4a8a41cbd30ec628182485a937160)
Overlapping features between both of these variants include:

Prepended XOR key
Shellcode in the MZ header
Stack Strings
Rolling Config XOR decryption key: 123456789

This sample contains all of these features including the RedDelta PlugX ones.

We believe with moderate confidence that this sample is tied to the Mustang
Panda/RedDelta threat actor group.

Similar Yet Different

Encrypted DAT File

On May 24 2021 an encrypted DAT file was uploaded to VirusTotal from Vietnam. The file
was uploaded with the name SmadDB.dat and is encypted with a 21 byte XOR key
prepended to the binary.

Figure 2: MWDB
While the majority of the RedDelta PlugX variants we have seen use a 10 byte prepended
XOR key; this is not the first deviation. There are three others in our collection that have a
prepended XOR key longer than 10 bytes.

XOR
Key
Length SHA256 (Encrypted File)

13 dba437c9030b5f857ce9820a0c9e2c252fd8aeda71c2101024d3576c446972a0

15 a1eb4ce6eaa0c35ca4e8285c32b59cd0dfb34018b3f454d4fa4cebe9906534d8

https://www.virustotal.com/gui/file/1c7897a902b35570a9620c64a2926cd5d594d4ff5a033e28a400981d14516600/submissions

5/16

XOR
Key
Length SHA256 (Encrypted File)

17 2304891f176a92c62f43d9fd30cae943f1521394dce792c6de0e097d10103d45

21 1c7897a902b35570a9620c64a2926cd5d594d4ff5a033e28a400981d14516600
(most recent sample)

This is not the only change; control flow obfuscation is also being added to the malware.

Control Flow Obfuscation

Mustang Panda is working on adding control flow obfuscation to their PlugX variant. This first
example shows control flow obfuscation added to the config decrypting routine.

6/16

Figure 3:1c7897a902b35570a9620c64a2926cd5d594d4ff5a033e28a400981d14516600
We don’t see this when comparing it to a prior sample (Figure 4).

7/16

8/16

Figure 4: dba437c9030b5f857ce9820a0c9e2c252fd8aeda71c2101024d3576c446972a0
In addition to control flow obfuscating being added, the newest sample’s function (Figure 3)
is updated to directly house the decryption routine versus it being in a separate function, as
seen in the prior sample (Figure 5).

9/16

Figure 5: XOR Routine - dba437c9030b5f857ce9820a0c9e2c252fd8aeda71c2101024d3576c446972a0
Our second control flow obfuscation example in this binary is pulled from an API hashing
algorithm.

Figure 6: Control Flow Obfuscation - API Hashing Function
Notice the multiple comparison statements controlling which branches are taken (Figure 6),
making it harder to follow the exection flow.

Mustang Panda appears to be adding control flow obfuscation to parts of their code but it
does not exist in all of the functions yet. They don’t stop with control flow obfuscation; they
are also modifing how the dynamic Windows API lookup is being performed.

Resolving Windows API Calls

The binary also contains deviations in how it dynamically resolves Windows API functions.
Figure 7 shows how the previous samples did this.

10/16

11/16

Figure 7: Prior Dynamic API Calling (dba437c9030b5f857ce9820a0c9e2c252fd8aeda71c2101024d3576c446972a0)
Notice the API name is built on the stack and then resolved using GetProcAddress. They do
this consistantly throughout the binary when dynamically resolving API calls.

The new sample,
ec1c29cb6674ffce989576c51413a6f9cbb4a8a41cbd30ec628182485a937160, changes
things up a bit by using two slightly different variations on the same pattern to resolve
Windows API calls.

Added Techinque - Method 1

The first method involves using API hashing to get LoadLibraryA and GetProcAddress
function pointers. The API hashing code is placed inline with the rest of the function. It’s not
separated into its own function. This is an important distinction as the next method does
separate it out. The API name is built on the stack between resolving GetProcAddress and
LoadLibraryA . The final step is to execute the Windows function hidden in the stack string.

The diagram below outlines the process in more detail.

12/16

Figure 8: Dynamic API Calling (Method 1)
Added Technique - Method 2

The second method is similar to the first but the Windows API hashing algorithm is placed
into a separate function. The Windows API names may or may not be encrypted. Figure 9
shows the function’s flow with the stack strings being encrypted. The unencrypted strings
follow this same pattern minus the decryption loop.

13/16

Figure 9: Dynamic API Calling (Method 2)
The next difference noted is around string obfuscation.

String Obfuscation

The older samples primarily make use of stack strings to hide from tools like strings.exe. This
new sample uses a mixture of stack strings with and without XOR encryption. The index of
the character being decrypted makes up one part of the XOR key for that letter. The second
part is a constant they add to it to get the final XOR key.

The string decryption function (for example, Figure 9) can be represented in Python as:

14/16

def str_decrypt(value: [bytes], xor_key_modified_by: int) -> str:
 plain_text = []
 for idx, val in enumerate(value):
 plain_text.append(chr(val^(idx+xor_key_modified_by)))
 return ''.join(plain_text)

To call it, pass an array of bytes and the constant to add to the XOR key. For example:

>>> str_decrypt([0x03, 0x0c, 0x18, 0x05, 0x09, 0x01, 0x5d, 0x5d], 0x68)
'kernel32'

They don’t always modify the XOR key by 0x68 ; sometimes they use other values like
0x2c .

Mustang Panda and RedDelta Infrastructure Overlap

This PlugX’s config contains two previously seen Mustang Panda command and control
servers;

101.36.125.203
vitedannews.com

Infrastructure Pivot

Content Loading..

Click a Node to Load Details Below

There are 7 samples in our repository that share the IP, 101.36.125.203, and one other
sample that shares the domain, vitedannews.com. All of these samples contain the
XXXXXXXX config value check making them the Mustang Panda variant. This RedDelta

variant (ec1c29cb6674ffce989576c51413a6f9cbb4a8a41cbd30ec628182485a937160)
makes the second instance where the IP/Domains overlap with the “original” Mustang Panda
PlugX variant. More about the first instance can be found on ThreatConnect’s blog. This
second infrastructure overlap further strenghtens our theory of them being the same group or
at least sharing personnel/infrastructure.

Conclusion

Over all we believe Mustang Panda will continue evolving the RedDelta variant to help
further thwart detection as time goes on. Historically the .dat file (the encrypted PlugX file) is
loaded using a sideloaded dll which does the loading, decrypting, and passing execution on
to this PlugX binary. These three files are sometimes packaged using a self extracting SFX
file. We can’t be certain that the updated variant was delivered in the same fashion, but that
would be something to look for.

Feedback welcomed via Twitter.

https://threatconnect.com/blog/research-roundup-mustang-panda-and-reddelta-plugx-using-same-c2/

15/16

Appendix

API Hashing

Spotting the Hashing Routine Inside Control Flow Obfucation

Taking our knowledge of API hashing algorithms (most, if not all, API hashing routines loop
through each character of the API name and apply the hashing algorithm to it) we can find
the only part of the algorithm we really care about, the hashing routine. The GIF starts from a
zoomed out position to identify a loop for inspection before zooming in on the hashing
algorithm loop.

Figure 10: Control Flow Obfuscation - API Hashing Loop
Rewriting the Hashing Algorithm in Python

The API hashing algorithm can be re-written in Python as:

16/16

def hasher(name: str):
 ebp = 0x811c9dc5
 for dl in name:
 edx = ord(dl) ^ ebp
 ebp = (edx * 0x1000193) & 0xffffffff
 print(hex(ebp))

LoadLibraryA == 0x53b2070f
GetProcAddress == 0xf8f45725

IOCs

1c7897a902b35570a9620c64a2926cd5d594d4ff5a033e28a400981d14516600
ec1c29cb6674ffce989576c51413a6f9cbb4a8a41cbd30ec628182485a937160
101.36.125.203
vitedannews.com
dba437c9030b5f857ce9820a0c9e2c252fd8aeda71c2101024d3576c446972a0
a1eb4ce6eaa0c35ca4e8285c32b59cd0dfb34018b3f454d4fa4cebe9906534d8
2304891f176a92c62f43d9fd30cae943f1521394dce792c6de0e097d10103d45
2f58a869711d2b28e6ecaac25cc2166daa46f7adfb719b7dd334e01c1474ca9b
2bfd100498f70938dedef42116af09af2db77ef1315edcea0ffd62c93015ddf5
b87d1c01daee804c7330d5ac6273e5dcba886e1663c929709c158fd45b11a7ba
4e30cfa4f3d3bd6192818c5619eb7f6a26a408ae9fd62a7629059f47466f757b
2531af12360e29b73b545210e1cbdfc2459c95e2827d3246e9d6933820a808dd
4b1dbb3fc4adba3a83a563e5e86afb56136a1f9ba0293ad21a00e031b88b2ad9
f631e8f0c723cccbc5b26387f4100351de2e158b6770e962733734be6ca119d5
76f44175f88984367ad62c81d1dcc947b1a26d6832fd33569d2c21113c1ddee2

